MagusPorta ESP8266 — GETTING STARTED

ESP8266 - Getting Started

The ESP8266 is a low-cost Wi-Fi module, essentially a self-contained SoC (System on Chip) with
integrated TCP/IP protocol stack that can provide full access to a Wi-Fi network. Basically, it is the
fundamental building block to any connected device, integrating it into what is currently known as loT
(Internet of Things).

There is a growing interest in the field of home automation, which will eventually require that all
electronic devices and even appliances in the home be able to communicate, with the user and among
each other. Several protocols are currently being discussed among manufacturers, looking to have a
unified “language” for the devices to speak, besides infrastructure, security, etc.

In any case, all starts with the device being able to connect to a Wi-Fi network, which eventually will
grant access to the home and the world. A few years ago, a company named Espressif launched the
ESP8266 chip, a Wi-Fi capable SoC that captured the interest of those looking to add Wi-Fi connectivity
to any device, in a very simple, reliable and cheap way. The chip was later mounted into a compact
module, an external memory was added, and now we have plenty of configurations to choose from,
starting with the cheapest ESP-01, with just the essential pins available and integrated antenna, to the
more complete ESP-14 (as of April 2016). The ESP-01 is the perfect starting point for anyone looking to
enter the world of connectivity, so this document will describe step-by-step how to start working with
this module.

Getting the hardware

First, get an ESP8266 module. In this case, as mentioned before, we will be using the cheapest version,
the ESP8266-01 (figure 1).

FIGURE 1 - ESP8266-01

Just eight pins are exposed outside the board in the included connector. The arrangement of these pins
is not breadboard-friendly, since the two rows are too close to fit on both sides of the middle groove.
While it is not difficult to create a simple adapter, | will show a better alternative to connect the module.
While this configuration only has eight pins, they are more than enough to start working with this
device. Figure 2 shows the function of each pin.

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

Xy O O GND L
OOGPIHOZ @@
]

RS O O GPIOO

(=)
(@)
(=]

=

FIGURE 2 - Pin description of the ESP-01 board

In order to connect the unit to a PC, program it and test your programs, it is recommended to use
something called “USB to TTL serial cable”. This device connects on one end to any USB port in your PC,
and in the other end it has four wires: +V, TX, RX, and GND. A couple of considerations are in order:

1. - Make sure that the TX and RX terminals work with 3.3 V signals. Anything above that will damage
the ESP module. The power terminal, +V, may be 3.3 V or 5.0 V, this will be discussed later.

2. - The USB device should work properly with your Windows version; there are some older devices
that will not work with Windows 8 or 10, so look for at least Windows 8 compatibility if you are running
the newest versions (as of April 2016).

There are other alternatives to connect the ESP to a PC, but | prefer this one due to its simplicity.
Besides, the USB to TTL adapter can be used for other tasks, such as re-flashing other devices’ firmware
(e.g. routers).

The adapter | will be using is called PL2303TA USB to TTL RS232 Converter Serial Adapter Cable. There
are several versions available, always make sure it is based on the PL2303TA chipset made by Prolific so
it will work with the newest Windows versions. Mine looks like figure 3.

FIGURE 3 — PL2303TA USB to TTL RS232 serial adapter cable

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

The color codes of the wires are:

RED: +5V
GREEN: TX (from the PC side, this will be connected to the ESP RX)

WHITE: RX (from the PC side, this will be connected to the ESP TX)
BLACK: GND (ground)

As you may have already noticed, the power terminal carries 5 V, deadly for the ESP. Be very careful to
NEVER connect this pin to the ESP module directly!

Now you may connect the ESP to the TX, RX and GND terminals, and procure a 3.3 V power source.
However, | would recommend building a simple adapter board, which will not only provide the proper
voltage to the ESP but also expose the ESP terminals in a more user-friendly way, giving you access to
the ports (GPIO 0 and GPIO 2) and the reset pin, besides simplifying the process of firmware update (by
moving a jumper) and showing the ports status in a visual way, by adding two LEDs.

Building the adapter board

Figure 4 shows the schematic diagram of the adapter board.

J2
VDD
J1 P
U1 &l
GPIO2 R2
0] © —AAA—
E! t+—o o J4 470Q LED2
SERIAL o o 3 D
; L !YE;-.GI 102
ESP o
N G2 SEL R1 =
RESET == vbD L J6 4700 LED1
3.3V R3 o
X v \j;a,oploo
10kQ o]
GO SEL kb
U2 VDD
J7 AMS1117-3.3 T 3.3v
fe - IR OUT
= .| €1 .| €2
POWER T“’“F - 22HF

FIGURE 4 — Adapter board schematic diagram

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

The connector named SERIAL will be connected to the USB to TTL cable pins, from top to bottom GREEN
(TX), WHITE (RX) and BLACK (GND). The RED (+5 V) wire is connected to the POWER terminal, upper pin.
The board contains a 3.3V, 1 A regulator, so the ESP will work at the desired level, even if the input
fluctuates. In fact this circuit can receive voltages as high as 15V, as described in the AMS1117
documentation, but it is advised not to apply this high level for a prolonged period of time, in order to
guarantee the device specifications. In the low side, this circuit may accept 4.5 V, so operation with 3 AA
or AAA batteries is possible.

Why is there a separated POWER connector, instead of adding the +5 V pin to the SERIAL connector?
Since this board, once the ESP is programmed, can work as a standalone device, completely
disconnected from a PC (e.g. once the Wi-Fi connection is set), it will only need the power supply to run.
Therefore, the POWER connector has been included for a clean setup in an independent configuration.

The GO SEL terminal lets you select between GPIO 0 mode (showing the status by LED1) and Firmware
Update mode, just by moving a jumper (connecting the middle to the lower pin will connect GPIO 0 to
LED 1).

The G2 SEL terminal is used to connect LED2 to GPIO 2 or making the port available to an external device
(e.g. a relay). Connecting the middle to the upper pin will send GPIO 2 signals to another connector,
named GPI02, which includes 3.3 V and GND pins, to fully drive an external device.

Please note that, while GPIO 0 does not have a fully dedicated connector (that includes power pins), you
can always connect the port to an external device by using the middle pin of GO SEL connector.

The RESET connector, when shorted (connected to GND), resets the ESP.

Finally, the ESP has its own socket, the 8-pin connector named ESP, so you can plug and unplug all your
ESP8266-01 modules every time you need to upgrade, program or even test them. This board may be
even used as part of your finished project, adding wireless communications for a true loT connected
device.

The board layout is shown in figures 5 through 7. The artwork is available in the Download section at
WwWw.magusporta.com.

FIGURE 5 — Adapter board, components side (populated)

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

FIGURE 7 — Adapter board, components side silkscreen (not populated)

The finished board, with the ESP and USB to TTL cable connected, should look like figure 8.

FIGURE 8 — Adapter board with the ESP module mounted in its socket, and the USB adapter cables connected

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

Connecting to the ESP

The first thing to do is make sure that the USB to TTL cable is recognized by Windows. The familiar sound
when a USB device is connected should play, and then, only the first time, windows should start looking
for the best available driver. Windows 10 does this automatically; you may have to experiment with
your version.

In the Device Manager option (in Control Panel) you can see all devices currently in use. When the
adapter is properly installed, it should appear under Ports (COM & LPT) as Prolific USB-to-Serial Comm
Port (COM3). The COM assignment may be different in your PC (COM4, COMS5, etc.), but you must
remember to which port it has been assigned since you will need this information later to access the
adapter.

In order to access the ESP, a couple of programs will be used. For firmware update purposes, i.e. re-
flashing the ESP, we will use the NodeMCU Flasher, called ESP8266Flasher.exe, located here:
https://github.com/nodemcu/nodemcu-flasher (as of April 2016). Select and download the appropriate
release version for your Windows environment (Win32 or Win64). Once the proper firmware version is
installed, another program, called ESPlorer.jar, will be used to upload the programs we create. As can be
guessed by the file extension, this program requires the latest version of Java to run. The program can
be downloaded from here: http://esp8266.ru/esplorer/ (as of April 2016).

Flashing the ESP

The module comes with some firmware already installed (may vary by vendor), and can be accessed
using AT commands. We will be using a much more user-friendly environment, created using Lua, called
NodeMCU. Therefore, the ESP needs to be re-flashed with this new environment. An interesting point is
that currently the NodeMCU developers let you choose which modules to include in the package, so you
can optimize the memory usage by selecting the modules you will actually use: http://nodemcu-
build.com/ (as of April 2016). Just go there, put the email address where you would like to receive the
firmware, select “Master” and choose the modules you will most likely use. Less modules means less
memory used, though you will have less functions available... you decide. Some basic (and fundamental)
modules are already selected for you; keep them. You may leave the miscellaneous options unselected
(unless you need them, of course). Click the “Start your build” button; you will receive a build-status
update in your mailbox within a few minutes.

The firmware download links will be sent right after the status message, and you will see that there are
2 bin files: one says “float” and the other “integer”. This indicates if the firmware can handle floating
point numbers or just integers. Unless you really need floating point operations, use the integer version,
to save resources. In any case, just download both and save them in a known location; you may decide
to use the other version in the future.

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

Now you can proceed to flash the ESP. Follow these steps:

1. - Connect the ESP to the PC via the adapter board and the USB to TTL cable as shown in figure 9;
remember to position the GO SEL jumper so GPIO 0 is connected to ground before plugging to the PC.

R

FIGURE 9 — Adapter board connections; the jumper in GO SEL (blue) is now connecting GPIO 0 to GND

2. - Run the program ESP8266Flasher.exe. This is the initial screen (figure 10); make sure that the right
COM port is selected.

ﬁ.
Operation Config About Log

COM Port COM3 Flash(E)

AP MAC Waiting MAC

STA MAC Waiting MAC

NODEMCU TEAM Ready

FIGURE 10 — ESP8266Flasher.exe, initial screen. Make sure to select the right COM port

3. - Under the “Config” tab, load the firmware you have just downloaded in the first slot (where it says
“INTERNAL://NODEMCU").

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

4. - Go back to the “Operation” screen and press the “Flash” button. The process will take a few
seconds; the MAC values will be populated during the process (figure 11). The blue LED in the ESP board
will blink while the communication is active.

ﬁ.
Operation Config About Log

COM Port COM3

NODEMCU TEAM Address:0x00000 Size:520192Byte

FIGURE 11 - Firmware update in progress

5. - After you receive the OK confirmation (green circle on the lower left corner, figure 12), close the
program, disconnect the USB adapter and you are done! Now remember to remove the jumper from GO
SEL, releasing GPIO 0 from ground.

E.
Operation Config About Log

COM Port B0k Flash(E)

o NODEMCU TEAM

FIGURE 12 - Firmware update completed

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

Programming the ESP

Now you are ready for the fun part. Once you released GPIO 0 from ground, reconnect the USB adapter
to the PC. Now, run the ESPlorer.jar program (figure 13).

| File Eit ESP View Links 2

[ogemMcUsMicroPyinon | AT v0.20 | Frankenshein | com3
Scripts | Commands T Snippets] Seltings /*] = o

Open CTS
g H

Open Relcad Save Save.. Close U;dn Rodu Cut Copy S;du Block s -
DR | | RTS | |

Iy %

)

|7 Format
(= Fs Info J
|G Reload

@

Donate

FIGURE 13 - ESPlorer working environment

Select the right COM port (same as before) and the connection speed (9600). Click the “Open” button
and you will receive some message from the ESP, like:

PORT OPEN 9600

Communication with MCU...

Got answer! AutoDetect firmware...

Can't autodetect firmware, because proper answer not received.
>

Great! You are connected.

Copyright ©2016 - Marcelo Maggi

MagusPorta ESP8266 — GETTING STARTED

To test the connection, just write a simple Lua script in the left window:
print (“Hello World”)

Click the “Save to ESP” button on the lower left; the program will open a window to have the program
saved on your PC first. Put any name you want (I named it Hello World.lua), click OK and then it will
start sending the program to the ESP. After uploading the program, it will run, as indicated by the
command dofile(“Hello World.lua”);... see below:

> file.remove("Hello World.lua");

> file.open("Hello World.lua","w+");

> w = file.writeline

> w([[print ("Hello World")]]);

> file.close();

> dofile("Hello World.lua");

Hello World

>

Success! You can see that the ESP returned the string Hello World after running the program.

For details on how to use all the functions of the ESPlorer program please refer to the developers’ page,
where they include the link to a comprehensive tutorial (http://esp8266.ru/esplorer/).

Standalone operation

Let’s see the adapter board functionality, testing the standalone operation of the ESP. Position both
jumpers, GO SEL and G2 SEL, so the GPIO ports are connected to the corresponding LEDs (figure 14).

FIGURE 14 - Jumpers positioned to connect the GPIO ports to the LEDs

Copyright ©2016 - Marcelo Maggi Page 10

MagusPorta ESP8266 — GETTING STARTED

Replace the previous program with this one:

function leds_on()
gpio.write(3,gpio.HIGH)
gpio.write(4,gpio.HIGH)
end

gpio.mode(3,gpio.OUTPUT)
gpio.mode(4,gpio.OUTPUT)
gpio.write(3,gpio.LOW)
gpio.write(4,gpio.LOW)
tmr.alarm(0,5000,tmr.ALARM_SINGLE,leds_on)

Upload and run. Both LEDs will turn off, and after 5 seconds they will turn on; this is a very simple way to
check that your program is running and the ports are responding correctly.

What if you would like to run this program independently, disconnected from the PC and the USB
adapter? First of all, rename your file to init.lua (this is the default file that runs when the power is
applied). Upload to the ESP. Now you can close the communication with the ESPlorer and disconnect the
USB adapter.

Connect the adapter board (with the ESP module) to a 5 V power supply (use the 2-terminal POWER
connector, figure 15). The LEDs will turn on after 5 seconds, demonstrating that the program is running
as expected, in a standalone configuration.

FIGURE 15 - ESP in standalone configuration

Now you have all the tools and initial knowledge to start programming the ESP8266. The NodeMCU
environment is based in Lua 5.14; you may find the complete language reference here:
http://www.lua.org/manual/5.1/ (as of April 2016). The web is filled with examples and the community
of people using the ESP8266 is continuously growing, so start experimenting and in no time you will
have your first connected device, the starting point for an loT setup.

In future tutorials | will show how to use the ESP Wi-Fi features, the true value of this powerful device.

Copyright ©2016 - Marcelo Maggi Page 11

MagusPorta ESP8266 — GETTING STARTED

Appendix A: Bill Of Materials (BOM)

Here is the list of the components required to build the adapter board. As mentioned before, the
artwork is available in the Download section at www.magusporta.com.

Reference Value Description
R1 470Q Metal film resistor, 1/8W, 1%
R2 470Q Metal film resistor, 1/8W, 1%
R3 10kQ Metal film resistor, 1/8W, 1%
Cc1 10uF/16V Tantalum chip capacitor 1206
c2 22uF/20V Tantalum chip capacitor 1210
LED1 Green 3mm standard green LED
LED2 Red 3mm standard red LED
U1 8-pin 2x4 female 0.1" pitch socket
u2 AMS1117-3.3 3.3V/1ASMD voltage regulator
J1 3-pin Male straight 0.1" pitch header
12 3-pin Male right angled 0.1" pitch header
14 3-pin Male right angled 0.1" pitch header
J5 2-pin Male straight 0.1" pitch header
16 3-pin Male right angled 0.1" pitch header
17 2-pin Male straight 0.1" pitch header

Please note that there is no “J3” in the design, so there is no reference missing here.

The LEDs used are the standard type, with Vf close to 1.7 V; if you plan to use higher Vf LEDs, such as
blue or white, you may consider using lower R1 and R2 values, e.g. 330 Q. Always try to use the larger R
value possible that still delivers good LED luminosity, since a large current draw from the GPIO ports
upon startup may create erratic behaviors. This is particularly true for GPIO 2, since it starts at high level,
and the ESP may not boot properly if the port is tied low, or at least sourcing significant current. The
symptom may be the blue LED on the ESP board to remain always on upon startup, and no
communication being possible with the module. If that happens, try disconnecting the GPIO 2 LED by
removing the jumper on the adapter board when the power is applied.

Copyright ©2016 - Marcelo Maggi Page 12

